skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Editors contains: "Chawla, Shuchi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Chawla, Shuchi (Ed.)
    Understanding the complexity of approximately counting the number of weighted or unweighted independent sets in a bipartite graph (#BIS) is a central open problem in the field of approximate counting. Here we consider a subclass of this problem and give an FPTAS for approximating the partition function of the hard-core model for bipartite graphs when there is sufficient imbalance in the degrees or fugacities between the sides (L, R) of the bipartition. This includes, among others, the biregular case when λ = 1 (approximating the number of independent sets of G) and Delta_R >= 7 Delta_L log(Delta_L). Our approximation algorithm is based on truncating the cluster expansion of a polymer model partition function that expresses the hard-core partition function in terms of deviations from independent sets that are empty on one side of the bipartition. Further consequences of this method for unbalanced bipartite graphs include an efficient sampling algorithm for the hard-core model and zero-freeness results for the partition function with complex fugacities. By utilizing connections between the cluster expansion and joint cumulants of certain random variables, we go beyond previous algorithmic applications of the cluster expansion to prove that the hard-core model exhibits exponential decay of correlations for all graphs and fugacities satisfying our conditions. This illustrates the applicability of statistical mechanics tools to algorithmic problems and refines our understanding of the connections between different methods of approximate counting. 
    more » « less